Steric Effects observed in the Electron Spin Resonance Spectra of Some Arylsemiquinones

By Paul Ashworth and William T. Dixon, Department of Chemistry, Bedford College, Regents Park, London NW1 4NS

The e.s.r. spectra of radicals derived from arylhydroquinones are discussed with particular reference to how the conformations of the radicals vary with increasing *ortho*-substitution on the aryl group. With two *ortho*-substituents the dihedral angle becomes close to 90° so that the major splitting from the aryl group is from the *meta*-protons. The results are rationalised in terms of two contributions to the coupling constants of protons associated with the aryl group, one from the π electron system and the other from delocalisation through the σ bond framework.

THE mechanism of the initial stages in the autoxidation of hydroquinones has recently been elucidated by means of e.s.r. spectroscopy.¹ After initial formation of the appropriate semiquinone (I) the reaction later involves secondary radicals of types (A) and (B).

The e.s.r. spectra of these three species are related to each other in a simple way and so it is useful to be able

to obtain three spectra from each starting material, since they corroborate each other and aid us in the assignments of coupling constants. In a previous paper we discussed radicals from *para*-substituted arylhydroquinones.² Trends were pointed out both in the hyperfine splittings of protons attached to the semiquinone ring, and in those of protons in the aryl fragment. The results indicated that delocalisation of spin density *away* from the semiquinone ring is facilitated by electrondonating groups in the *para*-position of the attached aryl group.

Other things being equal, we would have expected similar trends when the substituents were in an *ortho*-instead of the *para*-position.

¹ P. Ashworth and W. T. Dixon, J.C.S. Perkin II, 1972, 1130. ² P. Ashworth and W. T. Dixon, J.C.S. Perkin II, 1972, 2264. RESULTS

However, as regards the coupling constants on the semiquinone ring, the effects of *ortho*-substituents in the aryl group are much smaller than when those substituents are in the *para*-position, and are roughly the same as in the corresponding *meta*-derivatives (see Tables 1 and 2).

This last observation can be coupled with the more striking result, that the coupling constants of the aryl protons with increasing ortho-substitution on the aryl group, the ortho- and para-splittings decrease sharply. (2) For methyl substituents on the aryl group (i) p-methyl proton splittings are about the same as those of p-hydrogens, (ii) o-methyl proton splittings are less than those of o-hydrogens, and (iii) *m*-methyl proton splittings are about half those of *m*-hydrogens. (3) Related to points in (2), when the aryl group has two o-methyl groups, a p-chloro or -methyl

TABLE	1
-------	---

(a) Coupling constants of primary radicals from mono-substituted arylsemiquinones

		Coupling constants (G)										
Aryl group	~			Aryl group splittings								
	a_3	a_5	a_6	$a_o(\mathrm{H})$	$a_m(H)$	<i>a_p</i> (H)	asubstituent					
Ph	1.99	2.56	2.12	0.27	0.16	0.27						
o-FC ₆ H ₄	2.07	2.52	$2 \cdot 21$	0.16	0.16	0.16	$a_{\rm F} = 0.56$					
m-FC ₆ H ₄	2.02	2.56	2.13	0.28	0.12	0.28	$a_{\rm F} \approx 0.04$ *					
<i>p</i> -FC ₆ H₄	2.01	2.54	$2 \cdot 12$	0.28	0.12		$a_{\rm F} = 0.57$					
o-ClC H	$2 \cdot 12$	2.52	$2 \cdot 22$	t								
o-BrC H	2.10	$2 \cdot 50$	$2 \cdot 20$	0.10	0.10	0.10						
p-B.C.H.	2.04	2.48	2.04	0.28	0.16							
o-MeC H	2.09	2.51	$2 \cdot 20$	0.13	0.13	0.13	$a_{\rm Me} \approx 0.05$ *					
m-MeC ₆ H ₄	1.96	2.58	$2 \cdot 14$	0.27	0.18	0.27	$a_{\rm Me} = 0.09$					
o-OMeČ ₆ H₄	2.05	$2 \cdot 63$	$2 \cdot 17$	0.12	0.15	0.12						
m-OMeC ₆ H ₄	2.02	$2 \cdot 54$	2.05	0.26	0.15	0.26						
o-OHC,H,	1.82	2.65	2.28	0.14	0.14	0.14						
m-OHČ ₆ H₁	1.81	2.57	2.17	0.26	0.12	0.26						
p-OHC ₆ H ₁	1.38	$2 \cdot 53$	2.33	0.32	0.14							
o-NO ₂ C ₆ H ₄	2.10	$2 \cdot 56$	2.10	0.16	0.16	0.16	$a_{\rm N} \approx 0.06$ *					
m-NO,C,H4	$2 \cdot 26$	$2 \cdot 44$	1.94	0.27	0.12	0.27	$a_{\rm N} \approx 0.04$ *					
p-NO ₂ C ₆ H ₄	2.38	$2 \cdot 50$	1.92	0.30	0.15		$a_{\rm N}=0.07$					
o-PhC,H	2.06	$2 \cdot 60$	2.06	t								

* Unresolved splitting, estimated from observed splitting in secondary (A). † Aryl group splittings not resolved.

(b)	Coupling	constants o	of secondary	radicals	from	monosubstituted	aryl	semiqui	inones
-----	----------	-------------	--------------	----------	------	-----------------	------	---------	--------

Coupling constants (G)

		Seconda	ary rad	ical (A)		Secondary radical (B)				,	
Arvl group splittings						Aryl group splittings					
a_3	a_6	$a_o(H)$	$a_m(\dot{\mathrm{H}})$	$a_p(\tilde{\mathbf{H}})$	asubstituent	a_3	a_5	$a_o(H)$	$a_m(H)$	$a_p(H)$	$a_{\rm substituent}$
0.50	1.08	0.54	0.31	0.54		0.67	4.52	0.12	0.12	0.12	
*						0.68	4.72	,†			$a_{\rm F}=0.40$
0.53	1.15	0.53	0.28	0.53	$a_{\rm F} = 0.08$	0.66	4.64	0.12	0.12	0.12	
0.21	1.09	0.58	0.30		$a_{\rm F} = 1.09$	0.66	4.48	0.12	0.12		$a_{\rm F}=0.24$
0.20	1.27	0.25	0.25	0.50		0.65	4.72	÷			
0.48	1.23	0.24	0.24	0.17		0.64	4 ·74	Ť			
0.49	1.13	0.59	0.31			0.67	4.56	0.12	0.12		
0.51	0.96	0.28	0.28	0.28	$a_{Me} = 0.11$	0.64	4.56	Ť			
0.52	1.06	0.52	0.32	0.52	$a_{Me} = 0.16$	0.62	4.45	0.12	0.12	0.12	
0.52	1.12	0.26	0.26	0.26		0.67	4.65	†			
0.54	1.08	0.54	0.29	0.54		0.68	4.56	0.15	0.12	0.15	
0.49	0.82	0.24	0.24	0.30		0.64	$4 \cdot 16$	†			
0.51	0.96	0.51	0.27	0.21		0.66	4.36	0.15	0.12	0.12	
0.53	0.53	0.62	0.27			0.63	4.00	0.14	0.10		
*					$a_{\rm N} = 0.13$	‡					
0.43	$1 \cdot 42$	0.60	0.30	0.60	$a_{\rm N} = 0.09$	‡					
0.45	1.48	0.60	0.30		$a_{ m N}=0.15$	0.70	4 ·86	0.12	0.12		
0.48	1.04	0.30	0.30	0.50	0.10 (2 protons)	0.64	4·44 †				
	$\begin{array}{c} a_3 \\ 0.50 \\ * \\ 0.53 \\ 0.51 \\ 0.50 \\ 0.48 \\ 0.49 \\ 0.51 \\ 0.52 \\ 0.52 \\ 0.54 \\ 0.49 \\ 0.51 \\ 0.53 \\ * \\ 0.43 \\ 0.45 \\ 0.48 \\ 0.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Secondary radical (A)Aryl group splittings a_3 a_6 $a_o(H)$ $a_p(H)$ $a_{substituent}$ a_3 0.50 1.08 0.54 0.31 0.54 0.67 * 0.68 0.53 1.15 0.53 0.28 0.53 $a_F = 0.08$ 0.66 0.51 1.09 0.58 0.30 $a_F = 1.09$ 0.66 0.51 1.09 0.58 0.30 $a_F = 1.09$ 0.66 0.50 1.27 0.25 0.22 0.20 0.48 1.23 0.24 0.24 0.17 0.64 0.49 1.13 0.59 0.31 0.67 0.51 0.96 0.28 0.28 0.28 $a_{Me} = 0.11$ 0.52 1.06 0.52 0.32 0.52 $a_{Me} = 0.66$ 0.52 1.06 0.52 0.32 0.52 $a_{Me} = 0.667$ 0.54 1.08 0.54 0.29 0.54 0.668 0.49 0.82 0.24 0.24 0.30 0.664 0.53 0.53 0.65 0.27 0.63 * $a_N = 0.13$ 1.42 0.60 0.30 $a_N = 0.09$ * 0.43 1.42 0.60 0.30 0.20 0.10 0.48 1.04 0.30 0.30 0.20 0.10 0.20	Secondary radical (A)Secondary radical (A)Secondary radical (A)Aryl group splittings a_3 a_6 $a_o(H)$ $a_m(H)$ $a_p(H)$ $a_{bubstituent}$ a_3 a_5 0.50 1.08 0.54 0.31 0.54 0.67 4.52 0.53 1.15 0.53 0.28 0.53 $a_F = 0.08$ 0.66 4.64 0.51 1.09 0.58 0.30 $a_F = 1.09$ 0.66 4.48 0.50 1.27 0.25 0.25 0.20 0.65 4.72 0.48 1.23 0.24 0.24 0.17 0.64 4.74 0.49 1.13 0.59 0.31 0.67 4.56 0.51 0.96 0.28 0.28 0.28 $a_{Me} = 0.11$ 0.64 4.56 0.52 1.06 0.52 0.32 0.52 $a_{Me} = 0.16$ 0.65 4.45 0.52 1.06 0.52 0.26 0.26 0.66 4.45 0.54 1.08 0.54 0.29 0.54 0.68 4.56 0.53 0.53 0.65 0.27 0.63 4.00 $*$ $a_N = 0.13$ $\frac{1}{4}$ 0.43 1.42 0.60 0.30 0.20 0.10 0.29 1.44 0.43 1.42 0.60 0.30 0.20 0.10 2.970008 4.44 4.44	Secondary radical (A) Secondary radical (A) Aryl group splittings a_3 a_6 $a_o(H)$ $a_m(H)$ $a_p(H)$ $a_{substituent}$ a_3 a_5 $a_o(H)$ 0.50 1.08 0.54 0.31 0.54 0.67 4.52 0.12 * 0.63 4.72 \uparrow 0.68 4.72 \uparrow 0.53 1.15 0.53 0.28 0.53 $a_F = 0.08$ 0.66 4.64 0.12 0.51 1.09 0.58 0.30 $a_F = 1.09$ 0.66 4.48 0.12 0.50 1.27 0.25 0.20 0.65 4.72 \uparrow 0.48 1.23 0.24 0.24 0.17 0.66 4.456 \uparrow 0.51 0.96 0.28 0.28 0.28 $a_{Me} = 0.11$ 0.64 4.76 \uparrow 0.51 0.96 0.52 0.32 0.52 $a_{Me} = 0.16$ 0.65 4.45 0.12	Secondary radical (A)Secondary radical (A)Secondary radical (A)Aryl group splittingsAryl group splittings a_3 a_6 $a_o(H)$ $a_m(H)$ $a_p(H)$ $a_{bubstituent}$ a_3 a_5 $a_o(H)$ $a_m(H)$ 0.501.080.540.310.540.674.520.120.120.120.501.080.530.280.53 $a_F = 0.08$ 0.664.640.120.120.531.150.530.280.53 $a_F = 1.09$ 0.664.640.120.120.511.090.580.30 $a_F = 1.09$ 0.664.640.120.120.501.270.250.250.2000.654.72 \dagger 0.481.230.240.240.170.644.74 \dagger 0.491.130.590.310.674.560.120.120.510.960.280.280.28 $a_{Me} = 0.11$ 0.644.56 \dagger 0.521.060.520.320.52 $a_{Me} = 0.16$ 0.654.450.120.120.521.080.540.290.540.684.560.120.120.530.530.650.270.634.000.140.10* $a_N = 0.13$ $\frac{1}{4}$ 0.431.420.600.30 $a_N = 0.09$ $\frac{1}{4}$ 0.431.420.	Secondary radical (A)Secondary radical (B)Aryl group splittingsAryl group splittings a_3 a_6 $a_o(H)$ $a_m(H)$ $a_p(H)$ $a_{substituent}$ a_3 a_5 $a_o(H)$ $a_m(H)$ $a_p(H)$ 0.501.080.540.310.540.674.520.120.120.120.120.531.150.530.280.53 $a_F = 0.08$ 0.664.640.120.120.120.511.090.580.30 $a_F = 1.09$ 0.664.480.120.120.120.501.270.250.200.654.72 $+$ 0.481.230.240.240.170.644.74 $+$ 0.481.230.240.240.170.644.74 $+$ 0.481.230.240.28 $a_{Me} = 0.11$ 0.644.56 $+$ 0.510.960.280.28 $a_{Me} = 0.11$ 0.644.56 $+$ 0.521.060.520.320.52 $a_{Me} = 0.16$ 0.654.450.120.120.521.060.520.260.260.664.46 $+$ 0.120.120.120.530.530.540.270.510.664.360.120.120.120.530.530.540.270.510.664.360.120.120.120.530.550.510.27

* Spectra not analysed. † Aryl group splittings not resolved. ‡ Spectra not obtained.

are about twice as large when a substituent is either in the *meta-* or *para-*position than when it is *ortho* with respect to the bond joining the two rings.

These two broad generalisations have led us to investigate more closely how changes in the dihedral angle affect the coupling constants of protons in the system which give a measure of the conjugation between the two rings.

A number of additional points arise from the results given in Tables 1 and 2 and require explanation. (1) Whereas the *meta*-proton coupling constants seem to remain constant group does not affect the resolution. On the other hand in the *o*-chlorophenylsemiquinone the aryl proton splittings are not resolved (due probably to broadening by hyperfine coupling with ${}^{35}Cl$ and ${}^{37}Cl$ nuclei). (4) In the primary radicals (I), *no* splitting is observed from *o*-methyl protons, from *o*-nitro nitrogen nuclei, or from ${}^{19}F$ on the *meta*position.

Most of these points can be explained in terms of the increase in dihedral angle between the two rings when the number of *ortho*-substituents is increased.

THEORY

It is not difficult to find a relatively simple, satisfactory model for the situation presented by two rings joined together. In the first place it seems that the coupling constants in the three types of radical bear a simple relationship benzene, *i.e.* expected ratios of aryl proton splittings are type (B): type (I): type (A): :1.34:2.37:4.98, *i.e.* ca. 1:2:4 as observed.

Molecular Orbital Model.—We can consider the delocalisation of the odd electron on to the aryl substituent as being

TABLE 2									
(a)	Coupling constants of primary radicals from polysubstituted arylsemiquinones								

	Coupling constants (G)									
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	gs					
Aryl group	$a_3$	$a_5$	$a_6$	ao(H)	$a_m(H)$	<i>a_p</i> (H)	asubstituents			
α-Naphthyl	2.16 $2.52$		$2 \cdot 16$			0·10 (2 p 0·16 (1 p	rotons) roton)			
2-Me. 3-ClC.H.	2.20	2.52	$2 \cdot 20$	*		<b>`</b> 1	/			
2.3-Me C.H.	2.05	$2 \cdot 52$	2.18	0.12	0.12	0.12				
2.4-Me.C.H.	2.05	2.55	2.18	0.13	0.13		$a_{\mathrm{Me}(a)} = 0.13$			
2,5-Me,C,H,	2.05	2.55	2.17	0.12	0.12	0.12				
2,6-Me,C,H,	$2 \cdot 10$	2.50	$2 \cdot 26$		0.12		$a_{\mathrm{Me}(\mathbf{e})} \sim 0.05 \dagger$			
2-Me,6-ClCeH,	2.14	$2 \cdot 50$	2.18		0.13					
2,6-Cl _s C _s H ₃	2.10	2.50	$2 \cdot 42$		$\sim 0.10$					
2,6-Me, 4-ClC,H,	$2 \cdot 20$	$2 \cdot 48$	$2 \cdot 20$		0.12		$a_{\mathrm{Me}(a)} \sim 0.05 \dagger$			
2,6-Me, 4-BrC, H,	2.20	$2 \cdot 49$	$2 \cdot 20$		0.14		$a_{\mathrm{Me}(o)} \sim 0.05 \dagger$			
2,4,6-Mc C.H.	2.11	2.54	$2 \cdot 26$		0.16		$a_{\mathrm{Me}(\omega)} \sim 0.04$ †			
2.4.6-Me., 3-BrC.H	$2 \cdot 16$	2.50	$2 \cdot 16$		0.11					

* Aryl group splittings not resolved. † Unresolved splitting, estimated from observed splitting in secondary (A).

(b) Coupling constants of secondary radicals from polysubstituted arylsemiquinones

Coupling constants (G)

	~	Secondary radical (A)					Secondary radical (B)						
	Aryl group sp					littings	~~~~~~			Aryl group splittings			
Aryl group	$a_3$	$a_6$	$a_o(\mathrm{H})$	$a_m(\mathbf{H})$	$a_p(H)$	$a_{\rm substituent}$	$a_3$	$a_{5}$	$a_o(\mathrm{H})$	$a_m(H)$	$a_{p}(H)$	a _{substituent}	
α-Naphthyl	0.53	1.16				0.23 (2 protons) 0.34 (1 proton)	0.64	1.60	†				
2-Me, 3-ClC _s H ₂	*					· · · · · · · · · · · · /	0.64	4.64	†				
2,3-Me ₂ C _e H ₃	0.48	1.10	0.24	0.24	0.24		0.64	4.48	t				
2, 4-Me ₂ C ₆ H ₃	*					$a_{\mathrm{Me}(o)} = 0.10$	0.64	4.52	ŧ,				
2,5-Me ₂ C ₆ H ₃	*						0.64	4.52					
$2,6-\text{Me}_2C_6H_3$	0.21	1.08		0.31		$a_{\mathrm{Me}(o)} = 0.09$	0.63	4.52		0.08			
2-Me, 6-ClC ₆ H ₃	0.54	1.18		0.30			0.56	5.86	t				
$2,6-Cl_2C_6H_3$	0.54	1.38		0.27			1.20	5.16	. †				
2,6-Me ₂ , 4-ClC ₆ H ₂	0.51	1.08		0.30		$a_{\mathrm{Me}(o)} = 0.09$	0.63	4.62	ŧ				
$2,6-Me_2, 4-BrC_6H_2$	0.50	1.09		0.30		$a_{Me} = 0.09$	0.64	4.62	t				
2,4,6-Me ₃ C ₆ H ₂	0.49	1.00		0.32		$a_{\text{Me}(o)} = 0.08$	0.62	4.52	•	0.09			
						$a_{\mathrm{Me}(p)} \sim 0.00$							
2,4,6-Me ₃ , 3-BrC ₆ H	*					-	0.64	4.60	†				
- •	* Sp	ectra no	t analys	ed or r	esolved	. † Aryl group s	plitting	s not re	solved.				

to each other, *i.e.* the hyperfine splittings of methyl or aryl protons which are associated with the aryl substituents vary in the same way for all three types of radical, as far as one can detect. These splittings in radicals of type (B) are about half those in the corresponding primary radicals which in turn are about half those in the radicals of type (A).

This suggests first that the dihedral angle is probably the same in all three cases and secondly, that the splittings in the aryl group are roughly proportional to the spin density on the carbon atom to which they are attached. Support



for this second possibility comes from the coupling constants in semiquinone itself and the radical from 1,2,4-trihydroxy-

³ J. A. Pople and D. L. Beveridge, J. Chem. Phys., 1968, 49, 4725.

similar to that in benzyl. Thus we look at the fragment consisting of the aryl group and the carbon atom to which



it is attached. This problem, together with the variation of spin densities with the angle of twist about the carbonaryl bond has already been discussed at various levels of sophistication.^{3,4} However some understanding is to be gained using simple molecular orbital theory. If the dihedral angle is  $\theta$  (see Figure 1) then we can resolve the

⁴ W. J. Van den Moek, B. A. C. Roussecuw, J. Smidt, W. G. B. Huysmans, and W. J. Mijs, *Chem. Phys. Letters*, 1972, **13**, 429.

2p- orbital of the adjacent carbon atom in the semiquinone ring into two parts, one,  $\phi_0 \cos \theta$ , which has the same symmetry as the  $\pi$  orbitals of the aryl substituent, and the other,  $\phi_0 \sin \theta$ , which has interactions only with the  $\sigma$  orbitals of the aryl group (see Figure 2). Spin density is therefore trans-



FIGURE 2

mitted effectively via two distinct routes and we can write the hyperfine splittings as a simple sum of two terms [equation (1)].

$$\begin{aligned} a(\theta) &= a_{\pi}(\theta) + a_{\sigma}(\theta) \\ &= a_{\pi}(0) \cos^{2}\theta + a_{\sigma}(90^{\circ}) \sin^{2}\theta \end{aligned} \tag{1}$$

We are interested in calculating the order of magnitude of the splittings and can estimate  $a_{\pi}(0)$  and  $a_{\sigma}(90^{\circ})$  either empirically, or theoretically using the parameters shown in Figure 3, which have been shown to account for a variety of coupling constants in n.m.r. spectra⁵ and for certain effects in elimination reactions.⁶ In both cases it is  $\pi$ 



Tiport 6=0°



or part 6=90°

FIGURE 3 Some of the orbitals involved in extreme conformations, with the appropriate resonance integrals and coefficients

interactions between bonds on adjacent atoms which are mainly responsible for the spin delocalisation. If we neglect differences in coulomb integrals the odd electron goes into a non-bonding orbital.

It has been found that values  $\gamma_{\pi} \approx 1/4$ ,  $\gamma \approx 1/4\sqrt{2}$ , for the resonance integrals, roughly reproduce the coupling constants in vinyl and in phenyl (in the case of the orthoand meta-protons). We use formula (2) for the splitting

$$a_{\rm H}(\sigma) = 508 \rho_{\rm H} \tag{2}$$

where  $\rho_{\rm H} = {\rm spin}$  density in the hydrogen 1s orbital.

This corresponds to an effective atomic number of hydrogen of unity. In the case of the  $\pi$  system we get the same formula as for benzyl  $[a_{C112} = 16.5, a_0(H) = 4.9, a_m(H) =$ 1.5,  $a_p(H) = 6.1$  G], *i.e.*  $a^{\pi}(H) = -28\rho_C$  where  $\rho_C = \text{spin}$ density in adjacent carbon  $p_{\pi}$  orbital. To be realistic we shall use the coupling constants in free benzyl to give us the  $\pi$  contribution and for the various kinds of proton we get the relationships (3)—(8) for the dependence on dihedral angle, for a given spin density '  $\rho$  ' on the ' benzylic ' carbon.

for the  $\pi$  part:

ortho: 
$$a_o^{\pi}(\mathbf{H}) = -8.75 \, \mathrm{c} \, \cos^2 \sigma \, \boldsymbol{\approx} \, -a_o^{\pi}(\mathbf{CH}_3)$$
 (3)

meta: 
$$a_m^{\pi}(\mathbf{H}) = +2.6 \, \rho \cos 2\theta \, \boldsymbol{\approx} - a_m^{\pi}(\mathbf{CH}_3)$$
 (4)

$$para: a_p^{\pi}(\mathbf{H}) = -10.5 \,\rho \cos^2\theta \approx -a_p^{\pi}(\mathbf{CH}_3) \tag{5}$$

for the  $\sigma$  part:

$$a_o^{\sigma}(\mathrm{H}) = +0.95 \, \rho \sin^2 \theta \approx + a_o^{\sigma}(\mathrm{CH}_3)$$
 (6)

$$a_m^{\sigma}(\mathbf{H}) = +2.54 \,\mathrm{\rho} \sin^2 \theta \tag{7}$$

$$a_p^{\sigma}(\mathbf{H}) = 0 \approx a_m^{\sigma}(\mathbf{CH}_3) \approx a_p^{\sigma}(\mathbf{CH}_3)$$
(8)

Only the value of p is different for the three types of radicals and to estimate it we use the coupling constants in the corresponding methyl substituted radicals 1 using  $Q_{\rm CH3} \approx 30$  G, *i.e.* from methylsemiquinone in primary (1)  $a(CH_3) = 2.12$ , in secondary '(A)',  $a(CH_3) = 5.12$ , and in secondary ' (B) ',  $a(CH_3) = 0.95$  G.

For our purposes, changes in '  $\boldsymbol{\rho}$  ' with the substituent in the aryl ring are small, and for obtaining orders of magnitude, we can equate a(H) with  $a(CH_3)$ . We shall go through with the calculation only for secondary radicals type '(A)'. since these have the largest splittings.

The variation of proton splittings within the aryl group in the type (A) radicals is therefore given by equations (9)-(13). One might have expected the dihedral angle in

$$a_o(\mathbf{H}) = -1.4 \cos^2 \theta + 0.16 \sin^2 \theta \tag{9}$$

$$n_{\rm o}(\rm CH_3) = \pm 1.4 \cos^2 \theta \pm 0.16 \sin^2 \theta \tag{10}$$

 $a_m(\mathbf{H}) = 0.44 \cos^2 \theta + 0.42 \sin^2 \theta$ (11)

$$a_m(\mathrm{CH}_2) = -0.44 \cos^2 \theta \tag{12}$$

$$a_p(H) = a_p(CH_3) = -1.75 \cos^2 \theta$$
 (13)

phenylsemiquinone to be of the order of  $45^{\circ}$ , that in the mono-ortho-substituted phenylsemiquinones to be 60° or



FIGURE 4 E.s.r. spectrum of the primary radical 2,6-dimethylphenylsemiquinone in 50% aqueous EtOH

more, and that in the 2,6-disubstituted phenylsemiquinones to be close to 90°. It is interesting therefore to compare the predicted couplings for these angles with those observed for the type (A) radicals when the aryl substituent is one of the methyl phenyl groups.

- ⁶ W. T. Dixon, J. Chem. Soc. (A), 1967, 1879.
  ⁶ W. T. Dixon, Tetrahedron, 1968, 24, 5509.

DISCUSSION

From Table 3 we can see that the theory does account quite well for the variation of the various coupling constants, the most significant deviations from predicted behaviour being that of *o*-methyl proton coupling constants. This might have been expected since distortion is most likely to occur at the *ortho*-position ⁷ (bond bending of C-CH₃). From the theoretical point of view this simple approach gives much the same variations with dihedral angle as do more sophisticated theories. ' $\sigma$  Spin delocalisation ', responsible for coupling constants when the angle is 90°, arises mainly from  $\pi$  type interactions involving the carbon hybrid orbitals each of which that 2/3 p character which can be resolved *para*-position, quite definite effects are observed in the coupling constants of protons attached to the original semiquinone ring. When the same substituents are in either the *ortho*- or in the *meta*-positions of the aryl ring, they have very little effect on the spin densities around the semiquinone ring. This is because, in the latter case, there is insufficient conjugation and in the former, presumably, there is less conjugation due to an increased dihedral angle. The most obvious case is that when the substituent on the aryl group is hydroxy (see Table 1) but other cases (*e.g.* NO₂) show similar relationships. The direction of effects induced by substituents on the aryl ring have been discussed already but what is important in the light of the present evidence is that the

#### TABLE 3

Comparison of calculated coupling constants of protons associated with aryl substituents with some of those observed for secondary radicals type (A) (in gauss)

		$Ar \equiv$	$Ar \equiv$		$Ar \equiv$		Ar ==	$\Lambda r \equiv$
	$\theta = 45^{\circ}$	p-MeC ₆ H ₄	$m-{ m MeC}_6{ m H}_4$	$\theta = 60^{\circ}$	$o-MeC_6H_4$	$\theta = 90^{\circ}$	2,6-Me ₂ C ₆ H ₃	2,4,6-Me ₃ C ₆ H
<b>a</b> -(H)	(-) 0.62	0.58	0.52	(-) 0.23	0.28	(+) 0.16		
$a - (CH_3)$	(+) 0.78			(+) 0.47	0.11	(+) 0.16	0.09	0.08
a-(H)	(+) 0.43	0.31	0.32	(+) 0.42	0.28	(+) 0.42	0.31	0.32
$a - (CH_3)$	(-) 0.22		0.16	(-) 0.11		0		
<b>a</b> -(H)	(-) 0.87		0.52	(−) 0· <b>4</b> 5	0.28	0	0	
<b>a</b> -(CH ₃ )	(·⊢) 0·87	0.58		(+) 0.45		0		0

into part along the adjacent C-C bond and part perpendicular to it. In fact the  $\pi$  interactions between carbon  $sp^2$  hybrid orbitals in ethylene are half the magnitude of the resonance integral assigned to the  $\pi$ bond, so they are by no means negligible.

meta-Proton Splittings.—Out of the theory and also from the results comes the fact that the meta-proton splittings are remarkably constant throughout the various series of aryl substituents studied. This has also been observed in aryl nitroxide radicals.⁸ This proves that the coupling constant must have the same sign at all dihedral angles. Since in the near perpendicular conformations these splittings arise effectively from hyperconjugation, *i.e.* direct transmission of spin density, the sign should be *positive*. This means that if we accept the spin polarisation mechanism in  $\pi$  type radicals we are led to confirm empirically that the spin density in the meta-carbon  $2p_{\pi}$  orbital must be negative.

Dihedral Angles.—The disappearance of hyperfine splitting due to ortho- or para-protons or methyl protons, in the primary and secondary type (B) radicals, together with appropriately low values in the secondary type (A) radicals, confirms that when there is a 2,6-disubstituted aryl ring, the dihedral angle between the two rings is close to 90°. Similarly when there is no ortho-substituent on the aryl ring, the angle, by comparison with theory, is apparently of the order of  $45^\circ$ . With a single orthosubstituent the situation is intermediate between these two.

Substituent Effects.—When substituents are in the ⁷ W. T. Dixon, M. M. Harris, and R. Z. Mazengo, J. Chem.

Soc. (B), 1971, 775.
 ⁸ A. Calder, A. R. Forrester, J. W. Emsley, G. R. Luckhurst, and R. A. Storey, Mol. Phys., 1970, 18, 481.

effects of a given substituent must be largely determined by the relative configuration of the  $\pi$  electron system, *i.e.* the effects of substituents are transmitted *only by* the  $\pi$  electron system. This point is usually assumed but seldom proved so directly. The reason why transmission of polar effects or of spin density is inefficient in the  $\sigma$  framework is because the  $\sigma$  bonds are so strong that they effectively damp out the effects of different polar groups.

¹⁹F Splittings.—Two points stand out here; first the ¹⁹F splitting in the *o*-fluoro-derivative is unexpectedly large, compared with either the p-fluoro case, or with the o-proton splitting which in other systems is usually about half the corresponding ¹⁹F coupling constant. Secondly, the coupling of a *m*-fluorine nucleus could only be resolved in the secondary type (A) radical spectrum. Both of these points can be explained by the fact that when fluorine is attached to a  $\pi$  system, the ¹⁹F coupling constants are thought to be of opposite sign to corresponding proton splittings⁹ and has been proved in some cases, e.g. by n.m.r. contact shifts in stable nitroxide radicals.¹⁰ This is so because spin density can get directly onto the fluorine atom via the  $F(2p_{\pi})$  orbital. Similarly in the case of  $\beta$ -fluorine coupling ^{10,11} spin density is transmitted onto a  $F(2p_a)$ orbital, presumably also giving rise to a positive contribution to the hyperfine splitting. The result of these two effects is that  $a_{\pi}({}^{19}\text{F})$  and  $a_{\sigma}({}^{19}\text{F})$  have the same sign

⁹ A. Hudson and J. E. W. Lewis, *Mol. Phys.*, 1970, **19**, **241**. ¹⁰ H. J. Jakobsen, T. E. Peterson, and K. Torssell, *Tetrahedron* 

¹⁰ H. J. Jakobsen, T. E. Peterson, and K. Torssell, *Tetrahedron* Letters, 1971, 2913.

¹¹ D. J. Edge and J. K. Kochi, J. Amer. Chem. Soc., 1972, 94, 4485.

## 1538

for *o*-fluorine but have opposite signs in the case of *m*-fluorine nuclei, because in the  $\pi$  part there is negative spin density derived from the *m*-carbon  $2p_{\pi}$  orbital. From our calculations above  $a_{\pi}^{m}$  and  $a_{\sigma}^{m}$  are approximately equal for hydrogen nuclei and of the same sign, *i.e.* for an angle of *ca.* 45°. For fluorine nuclei in the *meta*-position these two contributions would be expected also to have the same magnitude (*i.e.* about twice the proton splittings) but of opposite sign, so they cancel so effectively that the resultant splitting can be resolved only in the spectrum from the secondary radical type (A).

For o-fluorine, the two contributions are both positive and add to each other giving a comparatively large coupling constant.

### EXPERIMENTAL

E.s.r. spectra were recorded on a Varian E4 instrument. To obtain the primary radicals a solution of the arylhydroquinone (0.01M) in ethanol was mixed with an equal volume of 1% sodium hydroxide solution, both flow and static methods being used. The secondary radicals were obtained by adding an aqueous solution of the hydroquinone (0.05M) to an equal volume of 15% sodium hydroxide. A mixture of the two secondary radicals was initially obtained, but on leaving the solutions the spectra from the type (B) radical decayed leaving a pure spectrum from type (A). Since the overlap of the spectra from (A) and (B) was, at the most, very small, both could be analysed.

*Materials.*—The arylquinones, some of which were new compounds, were obtained by direct arylation of p-benzoquinone via the diazonium salts according to the method of Brassard and L'Écuyer.¹²

The extra steric strain in the ortho-substituted arylquinones lowered the m.p. in these compounds and they were initially produced as oils. They were obtained pure by repeated crystallization from light petroleum (at *ca*. -50 °C) until their m.p.s were sharp and the e.s.r. spectra did not reveal impurities.

[3/512 Received, 13th March, 1973]

¹² P. Brassard and P. L. L'Écuyer, Canad. J. Chem., 1958, **36**, 700.